Search results

1 – 10 of 315
Article
Publication date: 3 January 2017

Bahram Ramezanzadeh, Milad Mehdipour, S.Y. Arman and M. Ramezanzadeh

This study attempts to investigate corrosion inhibition properties of 1H-benzimidazole (B) and 1H-benzotriazole (BTA) on aluminum in 0.25 M HCl solution at different…

Abstract

Purpose

This study attempts to investigate corrosion inhibition properties of 1H-benzimidazole (B) and 1H-benzotriazole (BTA) on aluminum in 0.25 M HCl solution at different concentrations.

Design/methodology/approach

To this end, electrochemical techniques including electrochemical noise (EN), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization were used.

Findings

Results showed a greater corrosion inhibition efficiency of BTA than B on aluminum in HCl solution. BTA showed greater tendency to adsorption on the metal surface than B because of the inclusion of three nitrogen atoms.

Originality/value

The novelty of this work is comparing EN data with EIS and potentiodynamic polarization parameters.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 October 2021

Adel Attia, Lobna Khorshed, Samir Morsi and Elsayed Ashour

The purpose of this study was to investigate the polyacrylic polymer/Al2O3 as a new nanocomposite coating to protect brass and Al-bronze in 3.5% NaCl and the role of alumina…

Abstract

Purpose

The purpose of this study was to investigate the polyacrylic polymer/Al2O3 as a new nanocomposite coating to protect brass and Al-bronze in 3.5% NaCl and the role of alumina formulation on their protection efficiency

Design/methodology/approach

The corrosion efficiency of the nanocomposite coating (NCC) was evaluated by open circuit potential and electrochemical impedance spectroscopy (EIS).

Findings

The protection efficiency was more in the case of Al-bronze even for the same formulation of alumina NCC indicated the Cu substrate contribution. The Cu oxides in alloys and Al2O3 from the NCC and Al-bronze were responsible for this protection.

Originality/value

All the techniques supported each other, the presence of alumina was responsible for the corrosion protection efficiency.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 November 2017

A.K. Larios-Galvez, J. Porcayo-Calderon, V.M. Salinas-Bravo, J.G. Chacon-Nava, Jose Gonzalo Gonzalez-Rodriguez and L. Martinez-Gomez

The purpose of this research paper was to investigate the use of methanolic extract of Salvia hispanica (S. hispanica) as a green corrosion inhibitor for bronze in a simulated…

Abstract

Purpose

The purpose of this research paper was to investigate the use of methanolic extract of Salvia hispanica (S. hispanica) as a green corrosion inhibitor for bronze in a simulated acid rain solution.

Design/methodology/approach

Extract of S. hispanica was used as a green corrosion inhibitor for bronze in simulated acid rain solution. Electrochemical techniques such as potentiodynamic polarization curves, electrochemical impedance spectroscopy and electrochemical noise were used. Parameters such as polarization, charge transfer and noise resistance (Rp, Rct and Rn, respectively) were calculated.

Findings

Results showed that the extract acts as a good, anodic type of inhibitor. The inhibitor efficiency increased with increasing its concentration up to 400 ppm, decreasing beyond this concentration. Efficiency also increased with an increase in the immersion time. The inhibition was due to the adsorption of components found in the S. hispanica extract following a Langmuir adsorption isotherm.

Practical implications

S. hispanica extract can be used as a corrosion inhibitor for bronze in acid rain solution.

Originality/value

This study provides new information on the inhibition features of S. hispanica under specific conditions. This eco-friendly inhibitor could find applications to protect bronze exposed to polluted urban atmospheres.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 4 December 2018

Jun Cui, Wenjiao Yuan and Yuansheng Pei

A high-boron concentration solution is commonly used as a buffer system in the study of metal corrosion. However, it is impossible to apply such a high-boron concentration…

Abstract

Purpose

A high-boron concentration solution is commonly used as a buffer system in the study of metal corrosion. However, it is impossible to apply such a high-boron concentration solution in the practical use because of the high-cost and environment problem.

Design/methodology/approach

In this study, the authors examined the effect of a low dosage of boric acid and borax mixture as inhibitor to suppress carbon steel corrosion in 1 M HCl solution by weight loss experiment and various electrochemistry methods (potentiodynamic polarization curves, electrochemical impedance spectra and electrochemical noise).

Findings

Results showed that the borate mixture exhibited an anodic-type inhibitor characteristic, when the total boron concentration was in the range of 100∼150 mg L−1. The passivation performance derived from the formation of a passive film with and FeBO3-FeOOH structure, whose integrity and thickness gradually increased with the increasing boron concentration.

Originality/value

Low boron solution could protect carbon steel from the attraction of corrosive ions by forming a passive film with Fe-O-B structure. The findings broaden the application range of borate solution in the industry.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 13 September 2021

Jose-Gonzalo Gonzalez-Rodriguez, Andres Carmona Hernandez, E. Vázquez-Vélez, A. Contreras-Cuevas and Jorge Uruchurtu Chavarin

This paper aims to use an imidazole-based n-ionic Gemini surfactant derived from palm oil to inhibit the sulfide stress corrosion cracking of a supermartensitic stainless steel.

Abstract

Purpose

This paper aims to use an imidazole-based n-ionic Gemini surfactant derived from palm oil to inhibit the sulfide stress corrosion cracking of a supermartensitic stainless steel.

Design/methodology/approach

The slow strain rate testing technique, hydrogen permeation tests and potentiodynamic polarization curves have been used.

Findings

Addition of the inhibitor below the critical micelle concentration (CMC) decreased the corrosion current density (icorr), but not enough to avoid embrittlement due to the entry of hydrogen into the steel. Instead, the addition of the inhibitor close to the CMC decreased the icorr, suppressed the entry of hydrogen and inhibited the sulfide stress cracking of steel. Finally, the addition of inhibitor above the CMC led to a slight increase of icorr and promoted localized corrosion, however, the sulfide stress cracking of steel was inhibited.

Originality/value

A green sulfide stress corrosion cracking inhibitor of a supermartensitic stainless steel has been obtained.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 19 September 2022

Jiezhen Hu, Junhao Deng, Peichang Deng and Gui Wang

This paper aims to study the use of electrochemical noise (EN) technology in the corrosion continuous monitoring of stainless steel (SS) in an atmospheric environment.

Abstract

Purpose

This paper aims to study the use of electrochemical noise (EN) technology in the corrosion continuous monitoring of stainless steel (SS) in an atmospheric environment.

Design/methodology/approach

An EN electrode was designed and fabricated to acquire the EN of 304 SS in the atmospheric environment. The statistical analysis and shot noise analysis were used to analyze the EN, and the surface morphology analysis of 304 SS was used to verify the EN analysis results.

Findings

The activation state, passive film formation and pitting corrosion of 304 SS can be clearly distinguished by the amplitude and frequency change of EN. The metastable pitting corrosion and steady-state pitting corrosion can be identified with the shot noise parameters q and fn. Under the existence of chloride ion, the stability of 304 SS passive film decreases and the steady-state corrosion pits of 304 SS are more likely to form with the reduction of thin electronic layer (TEL) pH. The critical TEL pH of 304 SS corrosion is a pH between 3 and 4.

Originality/value

In an atmospheric environment, the EN technology was used in the corrosion continuous monitoring of SS.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 9 August 2019

Jeetendra Kumar Malav, Ramesh C. Rathod, Vipin Tandon and Awanikumar P. Patil

The purpose of this study is to improve the anticorrosion performance of low nickel stainless steel (AISI 201) in 3.5% NaCl by electroactive polyimide/copper oxide (EPI/CuO…

Abstract

Purpose

The purpose of this study is to improve the anticorrosion performance of low nickel stainless steel (AISI 201) in 3.5% NaCl by electroactive polyimide/copper oxide (EPI/CuO) composites coating.

Design/methodology/approach

Electroactive polyimide/copper oxide (EPI/CuO) composites were prepared by oxidative coupling polymerization followed by thermal imidization method.

Findings

The functional and structural properties of composites were characterized by X-ray diffraction, Fourier transmission infra-red and ultra violet-visible spectroscopy and the surface topography was characterized by field emission scanning electron microscope analysis and anticorrosion performance in 3.5 Wt.% NaCl was evaluated by electrochemical techniques. The obtained results of electrochemical techniques measurement indicated that the composites coated samples give better corrosion protection against attacking electrolyte.

Originality/value

The ever-increasing price of nickel (Ni) is driving the industries to use low-Ni austenitic stainless steels (ASSs). However, it exhibits relatively poor corrosion resistance as compared with conventional Cr-Ni ASSs. Nonetheless, its corrosion resistance can be enhanced by polymeric (electroactive polyimide [EPI]) coating. CuO particles exhibit the hydrophobic properties and can be used as inorganic filler to incorporate in EPI to further enhance the corrosion protection. The present research paper is beneficial for industries to use low-cost AISI 201, enhance its corrosion resistance and replace the use of costly conventional Cr-Ni ASSs.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 17 August 2018

Fahimeh Ansari, Reza Naderi and Fahimeh Rafiaei

This paper aims to access the protective function of hybrid sol-gel coatings deposited on 304L stainless steel substrate in silane solutions containing a mixture of…

Abstract

Propose

This paper aims to access the protective function of hybrid sol-gel coatings deposited on 304L stainless steel substrate in silane solutions containing a mixture of tetraethoxysilane, methyltriethoxysilane and glycidyloxypropyltrimethoxysilane with different pH values during various immersion periods.

Design/methodology/approach

The 304L stainless steels coated through 10 and 30 s of immersion in the silane solutions with pH values of 2.1 and 2.8 were exposed to NaCl solution. The corrosion resistance of the coated substrates was studied through taking advantage of electrochemical noise method as well as atomic force microscopy (AFM), water contact angle and field emission-type scanning electron microscopy (FESEM) surface analysis.

Findings

The electrochemical current noise, PSD (I) plot, noise resistance and characteristic charge as parameters extracted from electrochemical noise method indicated the superiority of eco-friendly silane coating deposited on the substrate surface during 10 s exposure to the solution, due to the film uniformity and homogeneity as confirmed by FESEM and AFM. Moreover, immersion of the stainless steel in the silane solution with pH 2.1, characterized by higher hydrolysis ratio, led to more effective corrosion control in the NaCl electrolyte according to the results of electrochemical noise and FTIR measurements.

Research limitations/implications

The noise resistance and characteristic charge as electrochemical noise parameters were only used in this research to evaluate the protective behavior of the water-based silane sol-gel coatings. Future studies should examine the correlation between electrochemical noise data and the parameters extracted from other electrochemical methods, e.g. electrochemical impedance spectroscopy.

Practical implications

The data obtained in this research may provide an effective approach based on electrochemical noise method to screen the silane sol-gel coatings for protection of metallic substrates against corrosion.

Originality/value

According to the literature, no report can be found studying the effect of immersion time on a silane solution, including glycidyloxypropyltrimethoxysilane, tetraethoxysilane and methyltriethoxysilane, as well as the silane solution pH on the corrosion resistance of 304L stainless steel in NaCl solution through electrochemical noise method.

Article
Publication date: 30 May 2023

Qiang Wang, Hongliang Zhang, Da Quan Zhang, Hongai Zheng and Lixin Gao

The purpose of this paper is to study the effect of vapor assembly sequence and assembly temperature on the corrosion protection of the complex silane films Al alloy. The…

Abstract

Purpose

The purpose of this paper is to study the effect of vapor assembly sequence and assembly temperature on the corrosion protection of the complex silane films Al alloy. The performance and application range of silane films are enhanced.

Design/methodology/approach

The complex silane films were successfully prepared on the surface of aluminum alloy using via vapor phase assembly of 1,2,3-benzotriazole (BTA) and dodecyltrimethoxysilanes (DTMS). The protection of the assembly films against corrosion of Al alloy is investigated by the electrochemical measurements and the alkaline solution accelerated corrosion test. Thickness and hydrophobicity of the complex films are studied using ellipsometric spectroscopy and contact angle tests.

Findings

It shows that the anti-corrosion ability of the complex films is overall superior to that of the single-component assembled films. DTMS-BTA films have larger thickness and best anti-corrosion ability. The alkyl chains in DTMS have better compatibility with BTA molecules. The rigid BTA molecule can permeate into the long alkyl chain of DTMS as fillers and improve the barrier properties of the complex films.

Originality/value

In this paper, a green and efficient method of vapor phase assembly is proposed to rust prevention during manufacture of Al alloy workpiece.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 December 2018

Soheil Bazazzadeh, Arman Shojaei, Mirco Zaccariotto and Ugo Galvanetto

The purpose of this paper is to apply the Peridynamic differential operator (PDDO) to incompressible inviscid fluid flow with moving boundaries. Based on the potential flow…

Abstract

Purpose

The purpose of this paper is to apply the Peridynamic differential operator (PDDO) to incompressible inviscid fluid flow with moving boundaries. Based on the potential flow theory, a Lagrangian formulation is used to cope with non-linear free-surface waves of sloshing water in 2D and 3D rectangular and square tanks.

Design/methodology/approach

In fact, PDDO recasts the local differentiation operator through a nonlocal integration scheme. This makes the method capable of determining the derivatives of a field variable, more precisely than direct differentiation, when jump discontinuities or gradient singularities come into the picture. The issue of gradient singularity can be found in tanks containing vertical/horizontal baffles.

Findings

The application of PDDO helps to obtain the velocity field with a high accuracy at each time step that leads to a suitable geometry updating for the procedure. Domain/boundary nodes are updated by using a second-order finite difference time algorithm. The method is applied to the solution of different examples including tanks with baffles. The accuracy of the method is scrutinized by comparing the numerical results with analytical, numerical and experimental results available in the literature.

Originality/value

Based on the investigations, PDDO can be considered a reliable and suitable approach to cope with sloshing problems in tanks. The paper paves the way to apply the method for a wider range of problems such as compressible fluid flow.

Details

Engineering Computations, vol. 36 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 315